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It is proposed in this abstract some suggestions for the manufacturing of 
advanced sensors (smart sensors) that are based on amorphous nanostructures 
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to prepare intelligent sensors from which their transducer elaboration needs 
specific requirements, such as in geometry and material of every sample. 
Moreover, it is quite important the correlation understanding between the 
necessities of the community or company that will operate with them. It means 
the manufacturing of the transducer samples can be prepared by a sputtering 
process, atomic load deposition, and also by electrochemical reactions. Hence 
it is suggested to analyze the chemical components that are possible to find in 
the Andes mountains, also the strict compromise of the responsible residual 
collection of every production step and caring for the environmental conditions. 
Furthermore, it is proposed that designers could get an understanding of 
the Andes mountains conditions because many times it is not analyzed the 
geographic or climatic conditions, where there will be used devices that require 
sensors for many applications such as fishing tasks, agriculture tasks, mining 
tasks, and public transport tasks. In this context, the advantages of the sensors 
based on nanostructures are supported by the robustness and short response 
time that give more time for active applications of the sensors as part of a 
mechanic or mechatronic systems. This advantage helps to program possibilities 
by a microcontroller to execute adaptive algorithms and enhance the physical 
measurement tasks.

Keywords: Amorphous nanostructures – geographic/climatic Andes moun-
tains conditions – smart sensors

En esta propuesta se plantean algunas sugerencias para la fabricación 
de sensores inteligentes basados en nanoestructuras amorfas, para lo cual 
la elaboración de los transductores de los sensores debe tener en cuenta la 
correlación entre su geometría interna (en escala nanométrica) y el material que 
lo compone, además de los requerimientos de la empresa que los necesite y el 
espacio geográfico de la comunidad donde estos sean usados. Tal es así, que la 
fabricación de estos sensores requiere procesos complejos cual pulverización 
catódica, deposición atómica, e incluso deposición atómica mediante reacciones 
electro-químicas. Por lo tanto, se sugiere estudiar qué minerales y componentes 
químicos se pueden encontrar en los alrededores de las montañas Andinas, 
para así poderlos usar en la fabricación de los sensores, teniendo un estricto 
compromiso del cuidado ambiental con los residuos acabado los procesos 
de fabricación. Además, se plantea tomar en cuenta la comprensión de las 
características geográficas y climatológicas del lugar de fabricación, cual 
también el lugar donde se someterá a prueba y uso de los sensores diseñados, 
que generalmente para las actividades de la población Andina, puede darse en la 
minería, pesca, agricultura y transporte público. En este contexto, los sensores 
diseñados en base a nano estructuras tienen la ventaja de un corto tiempo de 
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respuesta y robustez frente a perturbaciones, lo cual es muy útil para tareas 
de sistemas mecánicos o mecatrónicas donde el carácter activo de los sensores 
mejore el performance de las tareas, también esta ventaja es un soporte desde 
el punto de vista de la programación del microcontrolador que le dé el carácter 
de inteligencia artificial al sensor elaborado, pues permite ejecutar algoritmos 
complejos y adaptativos para trabajar en mejor respuesta de la transducción.

Palabras clave: Condiciones geográficas/climáticas Andinas – nanoestructu-
ras amorfas – Sensores inteligentes

INTRODUCTION
The elaboration of advanced 

sensors needs very specific conditions, 
such as in the cleaning transducers 
samples task, which is given by 
electropolishing (electrochemical clea-
ning). Also for the elaboration of every 
Ultra-Thin Alumina Membrane (UTAM) 
sample is needed anodization as well 
as to start the procedure of the base, 
over which there will be stored atoms 
as the dependence on their materials: 
titanium, gold, silver, carbon and by 
structures: nanotubes, nanowires, 
nanodots, etc. (Ljung, 1994; Lei & Cai, 
2006; Calderón et al., 2019; Calderón 
et al., 2022).

The procedure described above 
is expensive, because of all the 
needed equipment, as for example, 
high vacuum chambers according to 
prepare the atomic load deposition, 
even though it can be possible to use 
electrochemical procedure to obtain 
the nanostructures. Hence, it must 
be analyzed the procedure for the 
responsible residual collections, as a 
result it must be analyzed the budget 

and the responsibility of the chemical 
residual collection in order to not 
damage the environment conditions, if 
it is decided to produce nanostructures 
in industrial level. In fact, it is 
suggested to keep good understanding 
of the sensors design requirements, 
because the dependence with the 
geographic/climate effects (Hwang, 
2014; Chang et al., 2021; Zhang et al., 
2022; Kees & Kasper, 2023).

Furthermore, in this research there 
are proposed some suggestions for the 
smart sensors design and the mathe-
matical procedure for the algorithms 
to be executed by the microcontroller 
of the designed smart sensors. Espe-
cially, there are proposed some sug-
gestions of the applications for the 
designed sensor, such as for example, 
there were given by the modular sys-
tems to be used for the enhancement 
of combustion motors, as a proposal 
in this research (Lobnik et al., 2010; 
Rahman et al., 2014; Sonker et al., 
2022).

The main objective in this 
research is given by the suggested 
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procedure for the smart sensors 
manufacturing, which also is based 
on the transducers that were designed 
by amorphous nanostructures. -There 
are consequently specific objectives, 
such as the transducers design as 
the dependence on the transduction 
properties. -Besides, it is as a specific 
objective the non-linear mathematical 
analysis for the adaptive algorithms 
design in order to give optimal 
measurements. There is another 
specific objective is given in explained 
suggestions for the applications of the 
designed sensors in tasks, such as in 
agriculture, mining, fishing and public 
transport for which it was interpreted 
some consequences to be used in the 
public transport applications of the 
Andes.

MATERIALS AND METHODS
For the advanced smart sensors 

that were designed it is proposed to 
use aluminum and consequently, it is 

possible to prepare different geometries 
on nanostructures that could be based 
on electropolishing, anodization and 
atomic load deposition (Lei & Cai, 2006).

After to have prepared the samples, 
it is proposed the transduction design 
as dependence on the physical 
variable to measure. As for example, 
the measurement of flow vibration 
surfaces, such as it is depicted by the 
figure 1, in which the electromagnetic 
transmitter sends a signal in Infrared 
(IR) wavelength according to take 
information of the target measurement, 
which is a vibration surface that 
achieve the estimation of the physical 
variables of the surface target by an 
analysis of the frequencies between 
the IR wave with the vibrating surface 
frequency. Therefore, the IR receiver 
has quite important task to get the 
transduction of the IR wave. The 
transduced physical variable can be 
voltage, electrical current or electrical 
resistance represented by the resultant 
measured physical variable.  

 
Figure 1. Proposed scheme of the IR receiver/transmitter from 

the designed smart sensor.
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On the other hand, it is depicted 
the vibration transducer (by contact 
between the transducer sample with 
the target measurement that also can 
be gases), which has the scheme of 
an inverted pendulum that was based 
on nanoparticles that were fixed over 

nanotubes and finally, the transduc-
ed resultant physical variable can give 
information of the main target as gas 
temperature, gas pressure or air hu-
midity. This depicted sensor is showed 
by the figure 2. 

Figure 2. Proposed scheme of the vibrating transducer from 
the smart designed sensor.

 

Otherwise, the methodology to 
suggest the manufacturing of smart 
advanced sensors under the Andes 
mountains conditions is given by 
the recognizement of the geographic 
and climate conditions of the place, 
in which samples of the advanced 
sensors will be created the and also of 
the place, where they will be used. 

Of course, a simple answer is given 
through the protocols of the laborato-
ry, in which will be prepared the nano-
structures samples. Nevertheless, it is 
assumed that the laboratory must to 
keep the conditions whereas it must 

be analyzed the residual reactions, 
according to not damage the environ-
ment conditions. It is necessary to 
know, what minerals can be possible 
to find in mining around the laborato-
ry, because to be used in the materi-
al analysis of the transducer samples 
elaboration. 

Furthermore, while it is known the 
requirement for which will be used 
the sensor, it is necessary to know 
if the adaptive algorithm detects the 
external parameters and no matter 
where to use the designed sensor that 
was based in the adaptive properties. 
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Notwithstanding, the manufacturing 
of the advanced sensor can contribute 
to the development of the community 
by the engineering applications.

The next step of the proposed meth-
odology is based on the understand-
ing of the theory and practice for the 
advanced sensors design. Therefore, 
it is proposed to start the theoretical 

analysis by the Schrödinger equation 
as it is showed by the equation (1), in 
which “h” is the Planck constant, “ψ” 
is the wave function for the particle or 
molecule in the position “x” and time 
“t”, and “m” is the mass. The equa-
tion (1) is a non-relativistic model of 
the Schrödinger equation (Wichmann, 
1971). 

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) = − ℏ2

2𝑚𝑚
𝑑𝑑2

𝑑𝑑𝑥𝑥2 𝛹𝛹(𝑥𝑥, 𝑡𝑡)                     (1) 

 The equation (2) is another pre-
sentation of the non-relativistic 
Schrödinger equation that gives pre-  

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) + ℏ2

2𝑚𝑚 𝛻𝛻2𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 0                     (2) 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)exp (− 𝑖𝑖𝑖𝑖𝑖𝑖
ℏ )                                (3) 

 
 

𝜑𝜑(𝑥𝑥) = 𝑓𝑓(𝑚𝑚, 𝑉𝑉, ℏ, 𝐸𝐸)                                             (4) 
  
 

𝑉𝑉 = 𝑔𝑔(𝑚𝑚, ℏ, 𝐸𝐸)                                         (5) 
 

 

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑖𝑖
𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
=  ∑ 𝑏𝑏𝑖𝑖

𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑢𝑢(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+ 𝑒𝑒(𝑡𝑡)                              (6) 

 

∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[ 𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)  + 𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                   (7) 

 
 

                                                 𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                         (8)                                                       
 
 

                                           𝐼𝐼𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑                                      (9)                                              

 
 

                 𝐼𝐼 = (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +
                                            ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇

0
𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                                                                 (10)       
 

 

sentation of its wave behavior (Wich-
mann, 1971).  

One solution is obtained by the 
equation (3), in which “E” is the energy 

level of the particle (Wichmann, 1971).
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 As well as “ϕ”(x) is the amplitude 
that depends on “m”, “h”, “E”, and “V” 
that is the achieved potential when 
it is analyzed the voltage effect of the 
charged particle in the equation (2). 

This dependence can be found by the 
function “f” as the behavior of a par-
ticle or molecule in the Schrödinger 
equation. Therefore, the amplitude 
“ϕ”(x) is given by the equation (4).  
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Furthermore, the potential function 
is also in dependence on “m”, “h”, and 
“E”, by the function “g” that also can 
be found the behavior of a charged 

particle or molecule in the Schrödinger 
model of the equation (2). Hence, the 
potential is given by the equation (5).

  

 

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) + ℏ2

2𝑚𝑚 𝛻𝛻2𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 0                     (2) 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)exp (− 𝑖𝑖𝑖𝑖𝑖𝑖
ℏ )                                (3) 

 
 

𝜑𝜑(𝑥𝑥) = 𝑓𝑓(𝑚𝑚, 𝑉𝑉, ℏ, 𝐸𝐸)                                             (4) 
  
 

𝑉𝑉 = 𝑔𝑔(𝑚𝑚, ℏ, 𝐸𝐸)                                         (5) 
 

 

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑖𝑖
𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
=  ∑ 𝑏𝑏𝑖𝑖

𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑢𝑢(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+ 𝑒𝑒(𝑡𝑡)                              (6) 

 

∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[ 𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)  + 𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                   (7) 

 
 

                                                 𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                         (8)                                                       
 
 

                                           𝐼𝐼𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑                                      (9)                                              

 
 

                 𝐼𝐼 = (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +
                                            ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇

0
𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                                                                 (10)       
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 As a consequence, the Schrödinger 
analysis that was described in para-
graphs above can help to understand 
the wave-particle behavior of the inter-
action between the particles-molecules 
that are part of the target measure-
ment system, such as the task to mea-
sure pressure, temperature, volume, 
flow of gases, liquids or solids, with 
the particles-molecules of the con-
tact surface of the transducer sample. 
This interaction is quite important to 
research, in order to get good under-
standing of an optimal transduction 
for the physical variables measure-
ment of the designed smart sensor, for 
which the Schrödinger equation gave 
support in order to prevent the nature 
of the particle as a wave or as a par-
ticle as part of the interaction. Hence 
the non-relativistic Schrödinger equa-
tion was based in not fast movement 
of the particles in interaction (not so 
proximal to the speed of light) is the 
theoretical model to get information 
of the transduction. Nevertheless, it 
must be analyzed cases of relativity, 
while it is working with non-contact 
physical variables measurement, be-
cause the interaction is based in the 
package of information that is ob-
tained by the selected electromagnetic 
wave that gives the information of the 
physical variable under the transduc-
tion effect (Wichmann, 1971).   

Whereas the main task of the de-
signed smart sensor is the measure-
ment of the target object physical vari-

ables by short response time and high 
robustness, which is achieved because 
of the amorphous nanostructures as 
part of the designed transducer sam-
ple. Consequently, it is possible to use 
a microcontroller to execute advanced 
and adaptive algorithms to give opti-
mal measured data due to the short 
response time of the measurement 
that can give time to execute the adap-
tive algorithms for the optimal mea-
surement. 

In this research, it was used a 
polynomial analysis in order to get a 
mathematical model for the analysis 
and interpretation of the data that was 
achieved from the experiments (mea-
surements), which is based on “Mod-
ulating Functions” owing to get the 
correlation among the measurement 
information with a theoretical model 
to get an optimal estimation of physi-
cal variables complementing the main 
measurement. The modulating func-
tion model is given by the equation (6), 
in which “y(t)” is the output variable 
as an array or a matrix of output vari-
ables, “u(t)” is the input variable as an 
array or a matrix of input variables, 
the derivatives can be generalized to 
order “n”, because to find the appro-
priated polynomial model and as a 
consequence of every coefficient “a” 
and “b” that by the auxiliary variable 
“i” can fix matrixes of parameters for 
the “a” and “b” respectively (Pearson, 
1995).

 

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) + ℏ2

2𝑚𝑚 𝛻𝛻2𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 0                     (2) 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)exp (− 𝑖𝑖𝑖𝑖𝑖𝑖
ℏ )                                (3) 

 
 

𝜑𝜑(𝑥𝑥) = 𝑓𝑓(𝑚𝑚, 𝑉𝑉, ℏ, 𝐸𝐸)                                             (4) 
  
 

𝑉𝑉 = 𝑔𝑔(𝑚𝑚, ℏ, 𝐸𝐸)                                         (5) 
 

 

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑖𝑖
𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
=  ∑ 𝑏𝑏𝑖𝑖

𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑢𝑢(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+ 𝑒𝑒(𝑡𝑡)                              (6) 

 

∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[ 𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)  + 𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                   (7) 

 
 

                                                 𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                         (8)                                                       
 
 

                                           𝐼𝐼𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑                                      (9)                                              

 
 

                 𝐼𝐼 = (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +
                                            ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇

0
𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                                                                 (10)       
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Therefore, the error model in or-
der to achieve the parameters of the 
mathematical model is obtained by in-
troducing a modulated function “” in 
the main model, as for example, in a 
second order model that is proposed 

by the equation (7), as well as the error 
in the proposed analysis is obtained 
by the integration in the domain from 
0 to a time parameter “T” (Pearson, 
1995).

According to keep the error model, 
there are proposed the following equa-

 

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) + ℏ2

2𝑚𝑚 𝛻𝛻2𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 0                     (2) 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)exp (− 𝑖𝑖𝑖𝑖𝑖𝑖
ℏ )                                (3) 

 
 

𝜑𝜑(𝑥𝑥) = 𝑓𝑓(𝑚𝑚, 𝑉𝑉, ℏ, 𝐸𝐸)                                             (4) 
  
 

𝑉𝑉 = 𝑔𝑔(𝑚𝑚, ℏ, 𝐸𝐸)                                         (5) 
 

 

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑖𝑖
𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
=  ∑ 𝑏𝑏𝑖𝑖

𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑢𝑢(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+ 𝑒𝑒(𝑡𝑡)                              (6) 

 

∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[ 𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)  + 𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                   (7) 

 
 

                                                 𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                         (8)                                                       
 
 

                                           𝐼𝐼𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑                                      (9)                                              

 
 

                 𝐼𝐼 = (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +
                                            ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇

0
𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                                                                 (10)       
 

 

tions (8) and (9) as the part of equation 
above (Pearson, 1995).                                             	

 

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) + ℏ2

2𝑚𝑚 𝛻𝛻2𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 0                     (2) 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)exp (− 𝑖𝑖𝑖𝑖𝑖𝑖
ℏ )                                (3) 

 
 

𝜑𝜑(𝑥𝑥) = 𝑓𝑓(𝑚𝑚, 𝑉𝑉, ℏ, 𝐸𝐸)                                             (4) 
  
 

𝑉𝑉 = 𝑔𝑔(𝑚𝑚, ℏ, 𝐸𝐸)                                         (5) 
 

 

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑖𝑖
𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
=  ∑ 𝑏𝑏𝑖𝑖

𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑢𝑢(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+ 𝑒𝑒(𝑡𝑡)                              (6) 

 

∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[ 𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)  + 𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                   (7) 

 
 

                                                 𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                         (8)                                                       
 
 

                                           𝐼𝐼𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑                                      (9)                                              

 
 

                 𝐼𝐼 = (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +
                                            ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇

0
𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                                                                 (10)       
 

 

 By integral analysis solutions, the 
equations (8) and (9) are reduced to 

the following equations (10) and (11) 
(Pearson, 1995).

 

𝑖𝑖ℏ 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛹𝛹(𝑥𝑥, 𝑡𝑡) + ℏ2

2𝑚𝑚 𝛻𝛻2𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 0                     (2) 

𝛹𝛹(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥)exp (− 𝑖𝑖𝑖𝑖𝑖𝑖
ℏ )                                (3) 

 
 

𝜑𝜑(𝑥𝑥) = 𝑓𝑓(𝑚𝑚, 𝑉𝑉, ℏ, 𝐸𝐸)                                             (4) 
  
 

𝑉𝑉 = 𝑔𝑔(𝑚𝑚, ℏ, 𝐸𝐸)                                         (5) 
 

 

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡) + ∑ 𝑎𝑎𝑖𝑖
𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑦𝑦(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
=  ∑ 𝑏𝑏𝑖𝑖

𝑑𝑑𝑛𝑛−𝑖𝑖

𝑑𝑑𝑡𝑡𝑛𝑛 𝑢𝑢(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1
+ 𝑒𝑒(𝑡𝑡)                              (6) 

 

∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[ 𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)  + 𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                   (7) 

 
 

                                                 𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                         (8)                                                       
 
 

                                           𝐼𝐼𝐼𝐼 =  ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑                                      (9)                                              

 
 

                 𝐼𝐼 = (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +
                                            ∫ 𝛷𝛷(𝑡𝑡)𝑇𝑇

0
𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝑦𝑦(𝑡𝑡)                                                                                 (10)       
 

 

For which the Boundary Condition 
(BC) is given by the equation (12) that 
is obtained from the equations (10) 

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

and (11) described above (Pearson, 
1995). 

𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇

0 𝑑𝑑𝑑𝑑                      (11) 
 

𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  
                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                

 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

 Therefore, reorganizing the equa-
tion (7), it is achieved the equation (13) 

(Pearson, 1995).

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

For which, replacing the equations 
(10), (11) and (12) in the equation (13), 

it is obtained the equation (14) (Pear-
son, 1995).



Manufacturing of smart sensors 

93

PA
ID

E
IA

 X
X

I

 Whereas, if the BC gets null value, 
as an assumption for the final solu-
tion of the equation (14), it can be pro-
posed the following equation (15) that 
gives information of the identified pa-

rameter of the main measured system 
with the solved correlation between 
the modulated function with the re-
sponse variable according to get an 
error equation (Pearson, 1995).

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

By other side, also it is possible 
to find the parameters by the matrix 
“θ”, which is proposed in the equation 

(16), because of costing function anal-
ysis (Wang, 2009).

                                   

Hence, e2 is the costing function 
“J” that is given by the equation (17) 

(Wang, 2009).                                                                 

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

The equation (18) is an expansion 

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

of the equation (17) (Wang, 2009).                                 

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 
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For the context 𝑑𝑑
𝑑𝑑𝑑𝑑

𝐽𝐽 
 

 equal to zero, it 
is possible to obtain the parameters 
“θ” of the polynomial model, which is 

given by the equation (19) (Wang, 200
                                    

      𝛳𝛳 = (𝑥𝑥𝑇𝑇𝑥𝑥)−1𝑥𝑥𝑇𝑇𝑦𝑦                               (19)        

However, the Least Mean Square 
(LMS) analysis helps to get an adap-
tive filtering for every input signal, as 
well as some estimations for expected 
physical variables in the measurement 
process. In the figure 3 it is depicted 
the curve “C”, which can be given from 

data experiment, the straights “L1” 
and “L2” proportionate information of 
the relation between the costing func-
tion with the weight matrix by a recur-
sive criterium (Calderón et al., 2019, 
2022).
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From the figure above, it is obtained 
the tangent of the angle “α”, in depen-
dence of the costing functions “J” for 
the positions 1 and 2, as well as in de-
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Figure 3. Geometric representation of the adaptive algorithm by LMS analysis.

pendence on the weights “W” for the 
positions “m” and “m+1”, which is pro-
posed by the equation (20) (Calderón 
et al., 2019, 2022).

From the previous equation, the 
difference of the both costing func-
tions values is given by the error 

square “e2”, which is proposed in the 
following equation (21) (Calderón et 
al., 2019, 2022).         
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On the other hand, the previous 
equation can be reduced to the point 
“A” analysis by derivative of the er-
ror square depending the weight “W” 

and the adjusted coefficient σ, which 
is proposed on the following equation 
(22). (Calderón et al., 2019, 2022).

Hence, looking for a reduction of 
the equation (22) to an infinitive point 
of the curve “C” (figure 3), such as it is 
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given in the point “A” by a derivative 
strategy it is obtained the equation 
(23) (Calderón et al., 2019, 2022).

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
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In the equation (24) it is continued 
the derivative analysis, but it is re-
placed the error “e” by the difference 
among the desired signal “D” with the 

estimated signal “XW” that has the de-
pendence on the internal variable “X” 
with the weight matrix “W” (Calderón 
et al., 2019, 2022).

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

Finally, it is possible to achieve 
the recursive equation known as LMS 
algorithm by the equation (25), in 

which the adjusted coefficient “µ” is a 
function of the previous coefficient σ 
(Calderón et al., 2019, 2022).

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 

Moreover, the adapted response 
by LMS is given by the equation (26) 

(Calderón et al. 2019, 2022).

 
𝐼𝐼𝐼𝐼 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑

𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑                      (11) 

 
𝐵𝐵𝐵𝐵 = 𝑎𝑎1(𝛷𝛷(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝛷𝛷(0)𝑦𝑦(0)) − (𝑑𝑑𝑑𝑑(𝑇𝑇)𝑦𝑦(𝑇𝑇) − 𝑑𝑑𝑑𝑑(0)𝑦𝑦(0)) +  

                             (𝛷𝛷(𝑇𝑇)𝑑𝑑𝑑𝑑(𝑇𝑇) − 𝛷𝛷(0)𝑑𝑑𝑑𝑑(0))                                               (12)                
 

                   𝐼𝐼 +  𝐼𝐼𝐼𝐼 + ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

[𝑎𝑎2𝑦𝑦(𝑡𝑡) − 𝑏𝑏1𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑑𝑑 =  𝑒𝑒(𝑡𝑡)                          (13) 

 

∫ 𝑦𝑦(𝑡𝑡)
𝑇𝑇

0

𝑑𝑑2

𝑑𝑑𝑡𝑡2 𝛷𝛷(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑎𝑎1 ∫ 𝑦𝑦(𝑡𝑡) 𝑑𝑑
𝑑𝑑𝑑𝑑 𝛷𝛷(𝑡𝑡)

𝑇𝑇

0

𝑑𝑑𝑑𝑑 + 𝑎𝑎2 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 

                −𝑏𝑏1 ∫ 𝛷𝛷(𝑡𝑡)
𝑇𝑇

0

𝑢𝑢(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝐵𝐵𝐵𝐵 =  𝑒𝑒(𝑡𝑡)                                                  (14) 

 
                                      𝛾𝛾0 − 𝑎𝑎1𝛾𝛾1 + 𝑎𝑎2𝛾𝛾2 − 𝑏𝑏1𝛾𝛾3 =  𝑒𝑒(𝑡𝑡)                            (15) 

 

                                                     𝑒𝑒2 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                          (16)                                          
 

                                                𝐽𝐽 = (𝑦𝑦 − 𝑥𝑥𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥𝑥𝑥)                             (17)                
                           
     

                                         𝐽𝐽 = 𝑦𝑦𝑇𝑇𝑦𝑦 − 2𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑦𝑦 + 𝑥𝑥𝑇𝑇𝛳𝛳𝑇𝑇𝑥𝑥𝛳𝛳                            (18)                                   
 

                                                tan(𝛼𝛼) =   𝐽𝐽2−𝐽𝐽1
𝑊𝑊𝑚𝑚−𝑊𝑊𝑚𝑚+1

                                       (20)     
 

                                                     𝑊𝑊𝑚𝑚 − 𝑊𝑊𝑚𝑚+1 = 𝑒𝑒2

tan(𝛼𝛼)                                    (21)                      
 

                                            𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2                                         (22)    

 

                                 𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1  + 𝜎𝜎 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑒𝑒2 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑                                                 (23)     
 

                               𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛+1 + 𝜎𝜎2𝑒𝑒 𝑑𝑑(𝐷𝐷 − 𝑋𝑋𝑋𝑋)
𝑑𝑑𝑑𝑑                               (24) 

 
                                                 𝑊𝑊𝑛𝑛   =    𝑊𝑊𝑛𝑛+1 − 𝜇𝜇𝜇𝜇𝑋𝑋                                        (25) 

 

                                                    𝑌𝑌𝑒𝑒 = 𝑋𝑋𝑊𝑊𝑛𝑛                                                  (26) 
 

 Indeed, the manufacturing of smart 
sensors based in nanostructures 
needs a good understanding of the 
requirements of the target sensor 
to elaborate, such as for example 
to know, what physical variable will 
measure the designed sensor or what 
material and geometry to use in the 
sample transducers of the designed 
sensor. Also to know, whether the 
laboratory is localized near a mining 
according to provide some minerals 
that can be useful for the transducer 
composition to elaborate. As well as 
to know the geographic and climate 
conditions of the place, where is 
localized the laboratory, because of 
to know what external disturbances 
could be possible to appear during 
the measurements and where to 
store the residuals components that 
were achieved during the sensors 
elaboration in order to care the 
environment condition by caring 
the residual components evacuation 

after the reactions of the sensors 
manufacturing, that means the 
result of all the elaboration process 
of smart sensors that were based in 
nanostructures.

The paragraph above is depicted by 
the two blue arrows in the entrance 
and exit of the back square in the 
figure 4. Otherwise, the two red 
arrows at the entrance and exit of 
the blue box inside the back square 
represent the measured data and 
the adaptive/filtered/estimated data 
that were achieved by the designed 
smart sensor. Inside the blue box is 
depicted the procedure that made 
by the microcontroller according to 
process the information from the 
transducers that are in interaction 
with the target to measure its physical 
variables (contact measurement). 
Either, another option to measure is 
given through the non-contact with 
the target to measure because of there 
is an electromagnetic wave to get the 
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information of the physical variables 
to measure from the target. For both 
contexts that are described above, it 
is executed an adaptive algorithm that 
was based in modulating functions 
for the polynomial analysis of the 
transduced data and previous filtered 
by LMS, taking reference a theoretical 
model of the physical variable to look 
for. Moreover, the algorithm has in 
reference the Schrödinger analysis in 
order to take care the transduction 
effect by the interaction between 

the target to make measurements 
as the dependence on the particles 
interaction in nanoscale, such as the 
wave-particle behavior in atomic scale 
around. Therefore, the measured data 
as a consequence of the designed 
smart sensor can execute complicated 
algorithms, because of the short 
response time and high robustness 
from the designed transducers 
that were based in amorphous 
nanostructures. (Calderón et al., 
2019, 2022).

Figure 4. Scheme representation of the proposed methodology for the 
smart sensors manufacturing.

 

Ethical aspects: This research has 
not ethical conflicts in the proposed 
article, it was cited every bibliographic 
reference for every described analysis.

RESULTS AND DISCUSSION
The result analysis of the proposed 

research is based in the simulation 
and experimental analysis results 
as a consequence of the previous 
mathematical analysis explained in 

chapters above. For the simulation 
analysis, it was simulated a second 
order system in order to explain an 
ideal signal to follow by the adaptive 
models, even though this model gives 
a theoretical criterion of the referential 
signal for the adaptive measurements. 
Therefore, the adaptive model can keep 
in reference an ideal model (supported 
by theoretical analysis) even though 
many times it is not so simple to find a 
theoretical model according to keep it 
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as a reference. Hence, in this context 
it is necessary to keep as a reference a 
filtered input signal, while it is known 
an estimation of the added external 
noise (Lei & Cai, 2006).

Otherwise, it is necessary to know 
that the parameters of the designed 
transducer can be the correlation 
between the system in its nanoscale 

(as the dependence on its geometry 
and materials) with the external macro 
system that is given by the transducer 
in fact. In summary, this process 
is executed by the algorithm of the 
microcontroller of the designed sensor 
that is represented by the flowchart of 
the figure 5.

Figure 5. Flowchart of the algorithm designed for the 
microcontroller of the smart sensor.

 

There are quite important characte-
ristics (geometrical and material) that 
recognized the designed transducer as 
part of the designed sensor (De Berre-
do-Peixoto et al., 2010). The transduc-
tion task is given by the interaction 
effect between the target to measu-
re its physical variables, such as for 
example to measure the temperature, 
pressure, vibration, distance as the 
dependence of the object to measu-
re with the designed sensor, also the 
target measurement can be a solid, 
a fluid or a gas. Moreover, there is a 

medium between the objective measu-
rement with the designed sensor. The 
transduction effect can be given by 
contact even though it cannot be to-
tally in contact among the transducer 
with the target measurement, because 
of for example, there are some parti-
cles or molecules of different compo-
sition of the target measurement with 
the transducer, between the surface 
of high temperature with a fixed ther-
mocouple. Otherwise, for non-contact 
measurement, it can be achieved the 
measurement through the electromag-
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netic wave that could get interaction 
between the target measurement, the 
medium and the transducer. Perhaps, 
in future the quantum coherence in 
sensors could make that the time de-
lays would be obtained between the 
interaction of the target measurement 
with the transducer could tend to be 
instantaneous and could not depend 
of the separation distance (García et 
al., 2021). As a consequence, whether 
the transducer can be defined by the 
material, the geometry and structure 
it can help for the optimal measure-
ment due to more appropriated ener-
gy transmission as an effect of the 
transducer. The proposed sensors of 
the described work in this article are 
designed for contact measurement or 
wireless measurement. Moreover, it 
is described by Schrödinger equation 
the relationship between the electrons 
and atoms between the target measu-
rement with the transducer structu-
re. It is necessary to analyze that the 
short response time and the robust-
ness in the physical variable measu-
rement over the target has correlation 
with the material and geometry/struc-
ture of the transducer, but the tradi-
tional transducers have not this effect. 
However, in this research is proposed 
this task and importance for the mea-
surement of physical variables, hen-
ce, while it is achieved short response 
time and robustness during the mea-
surement then it is possible to use the 
short response time according to give 
sophisticated function over the trans-
ducer, as for example, the artificial in-
telligence as it is known by the smart 

sensor (Wichmann, 1971; Calderón et 
al., 2019, 2022).

In the figure 6, there are subfigures 
A, B, and C that are showed regarding 
the nanostructures designed for the 
transducer samples of the smart 
sensor. The subfigure A shows a sample 
that is based on nanostructures of 
ferric particles that were stored over 
amorphous nanoholes of Anodic 
Aluminum Oxide (AAO). The subfigure 
B shows blocks of structures that 
were based on nanoparticles of 
Calcium Carbonate. The subfigure 
C shows nanoparticles of sodium 
that were stored over amorphous 
nanoholes that were based on AAO. 
For every nanostructure showed in 
the subfigures above, the overage size 
is around 1000 nm, hence, it was 
possible to show them by an optic 
microscope (Lei & Cai, 2006).

There were made experiments ac-
cording to evaluate the performance of 
the designed sensors, some applica-
tions were given for the measurement 
of the combustion motor surface vibra-
tion, according to give this information 
to the user and it could be possible to 
get understanding of the behavior of 
the motor, whether it needs reparation 
either it could need an analysis of the 
right selection of the used fuel for the 
combustion. 



Manufacturing of smart sensors 

99

PA
ID

E
IA

 X
X

I

Therefore, in the figure 7 it is 
showed the expected vibration curve 
in voltage equivalent (blue color 
curve), over which it is showed the 
experimental curve of the amplitude 
vibration of the surface combustion 
motor vibration in voltage equivalent 
(red color curve) achieved by a piezo-
electric sensor, as well as it is showed 
the archived measurements by the de-
signed smart sensor in voltage equiva-
lent (green color curve). 

In the figure 7 there are two graphs 
and the first one shows the ampli-
tude vibration that was analyzed lines 
above. Furthermore, the second graph 
shows the error of the measurement, 
in which the blue color curve is the 
result of the comparison between the 
theoretical curve with the data that 
was given by the designed smart sen-
sor, the green color curve is the result 
of the comparison between the theo-
retical curve with the curve data pro-
portionated by a piezoelectric sensor.  

Figure 6. Designed nanostructures over samples that are based 
on AAO amorphous nanoholes.V

 

Figure 7. Experimental data analysis for the designed smart sensor
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In fact, it was analyzed in this re-
search some proposals to elaborate 
smart sensors, moreover, some sug-
gestions that the manufacturing sen-
sors can be made in the Andes moun-
tains of Peru, owing to keep correla-
tion with the mining production, but 
always caring for the environment 
conditions.

Furthermore, in this research there 
were suggested some topics to get an 
optimal design for the measurement 
of the designed transducers, which 
are supported by the short response 
time and high robustness of the trans-
ducer samples that were based in 
amorphous nanostructures, as well 
as it was showed some applications of 
the designed smart sensors over com-
bustion motors that are quite used in 
public transport of Perú.

ACKNOWLEDGMENT
It is expressed deep warm 

gratefulness to Aleksandra Ulianova de 
Calderón due to her support according 
to understand the importance of the 
necessity that the engineering can be 
quite important solution to connect 
the researchers of the country with its 
development technology, but always 
with respect of the own ancestral 
knowledge of all ethnic communities. It 
is expressed special thankful to Carlos 
Luis Calderón Soria, because of his 
support during the experiments and 
his permission to make experiments 
with the Nissan Frontier 2003, in 
which the performance of the designed 
smart sensor was evaluated.

Author contributions: CRediT (Con-
tributor Roles Taxonomy)
JACCh = Jesús Alan Calderón-Cha-
varri 
EBBG = Eliseo Benjamín Barriga-Ga-
marra 
JCTF = Julio César Tafur-Sotelo 
JHLJ = John Hugo Lozano-Jáuregui
HRLN = Hugo Rósulo Lozano-Núñez
AJQM = Álex John Quispe-Mescco
FACC = Freddy Alan Ccarita-Cruz
Conceptualization: JACCh 
Data curation: JACCh
Formal Analysis: JACCh, EBBG, 
JCTS, JHLJ, HRLN, AJQM, FACC
Funding acquisition: JACCh, EBBG, 
JCTS, JHLJ, HRLN, AJQM, FACC
Investigation: JACCh, EBBG, JCTS, 
JHLJ, HRLN, AJQM, FACC
Methodology: JACCh, JHLJ, HRLN, 
AJQM
Project administration: JACCh, EBBG, 
JCTS, JHLJ, HRLN 
Resources: JACCh, EBBG, JCTS, JHLJ, 
HRLN, AJQM, FACC
Software: JACCh
Supervision: JACCh, EBBG, JCTS, JHLJ, 
HRLN, AJQM, FACC
Validation: JACCh, EBBG, JCTS, 
JHLJ, HRLN, AJQM, FACC
Visualization: JACCh, EBBG, JCTS, 
HRLN, AJQM, FACC
Writing – original draft: JACCh
Writing – review & editing: JACCh, 
JHLJ, HRLN



Manufacturing of smart sensors 

101

PA
ID

E
IA

 X
X

I

BIBLIOGRAPHIC REFERENCES
Calderón, J., Tafur, J., Barriga, B., & Lozano, J. (2019). Event Reconstruction 

Algorithm Proposal to Study Sensors Elaboration Based on Nanostructures. 
Proceedings of the 23rd World Multi-Conference on Systemics, Cybernetics 
and Informatics: WMSCI 2019, 78-83.

Calderón, J., Tafur J., Barriga E.; Lozano J., Randal D.; Urbizagástegui R., 
Zeña J., & Gózar C. (2022). Optimal analysis for the correlation between 
vibration and temperature through an intelligent sensor/transducer based 
in amorphous nanostructures to measure vibrating surfaces temperature. 
In: Vibration Monitoring and Analysis - Recent Advances. Yousuf, L.S. (ed.). 
IntechOpen, http://dx.doi.org/10.5772/intechopen.107622

Chang, N., Poduval G., Sang, B., Khoo, K., Woodhouse, M., Qi, F., Dehghani-
madvar, M., Li, W., Egan, R., & Hoex, B. (2021). Techno-economic analysis 
of the use of atomic layer deposited transition metal oxides in silicon hetero-
junction solar cells. Progress in photovoltaics, 31, 414-428.

De Berredo-Peixoto G., Katanaev M., Konstantinova E., & Shapiro I. (2010). 
Scrodinger equation in the space with cylindrical geometric defect and pos-
sible application to multi-wall nanotubes. Nuovo Cimento B1, 25, 915-931.

García, R., Zozulya A., & Stickney J. (2021). Teaching Quantum Mechanics with 
MATLAB. https://d32ogoqmya1dw8.cloudfront.net/files/matlab_computa-
tion2016/essays/teaching_quantum_mechanics_matlab.pdf

Hwang, Ch. (2014). Atomic layer deposition for semiconductors. Springer.
Kees, D., & Kasper P. (2023). Introduction to tensor calculus. https://www.ita.

uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf
Lei, Y., & Cai, W. (2006). Highly ordered nanostructures with tunable size, shape 

and properties: A new way to surface nano-patterning using ultra-thin alu-
mina masks. Progress in Materials Science, 52, 465-539.

Ljung, L. (1994). Modeling of dynamic systems. Prentice Hall.
Lobnik, A., Turel, M., Korent Spela., & Kosak, A. (2010). Nanostructured mate-

rials use in sensors: their benefits and drawbacks. Carbon and oxide nano-
structures. Springer.

Pearson, A. (1995). Aerodynamic Parameter Estimation Via Fourier Modulating 
Function Techniques. NASA Contractor Report 4654.

Rahman, M., Khan, S., & Asiri, A. (2014). Fabrication of smart chemical sensors 
based on transitions doped semiconductor nanostructure materials with 
u-Chips. PLoS ONE, 9, e85036. 

Sonker, R., Singh, K., & Sonkawade, R. (2022). Smart nanostructure materials 
and sensor technology. Springer.

Wang, L. (2009). Model Predictive Control System design and implementation us-
ing MATLAB. Springer-Verlag.

Wichmann, E. (1971). Quantum Physics, Berkeley physics courses, volume 4. 
Springer-Verlag.



Calderón-Chavarri et al.

102

PA
ID

E
IA

 X
X

I

Zhang, J., Li, Y., Cao, K., & Chen, R. (2022). Advances in atomic layer deposition. 
Nanomanufacturing and Metrology. Springer. 

Received March 15, 2023.

Accepted May 11, 2023. 


